Carbon taxes: Motivation and likely impacts

Development Dialogue Seminar
Carbon Tax – Role in the Macroeconomy & Climate Negotiations

Brent Cloete
Carbon pricing: policy imperative
Move to economic instruments

• Mitigation policy in developing countries mostly relied on
 – Renewable energy & energy efficiency
 – Measures to avoid deforestation

• Copenhagen Accord targets
 – Economic instruments will be required to keep climate change below 2°C

• Carbon leakage concerns in developed countries
 – Reliance on economic instruments in middle income developing countries
 o Otherwise trade measures
 o Other defensive measures (carbon labelling + product specification)

• SA is a case in point...
Carbon pricing imperative (2)

SA emissions in global perspective

- SA 13th largest emitter (30th largest economy) in 2008

Carbon intensity of major economies (GDP > $200bn)

- **South Africa** 63%
- **Nigeria** 14%
- **Angola** 3%
- **Rest of SSA** 20%

SSA: Annual CO₂ emissions from energy use (2008)

- South Africa 63%
- Rest of SSA 20%
- Angola 3%
- Nigeria 14%

Trade impact

Border Adjustment Measures (BAMs/BTAs)

- BAMs remove carbon-cost advantage of imports
 - Import tariff equal to difference in carbon price

- Discretion in implementation
 - Host governments define sectors + measurement methodology
 - US considering economy-wide BAMs
 - EU favours sectoral BAMs
 - Fear of protectionism

- If BAMs implemented – export taxes likely

- BAMs could significantly affect market access
Trade impact (2)

Average tariff on imports if virtual-C is taxed at $50/ton CO2 (2004)

<table>
<thead>
<tr>
<th>Exports from:</th>
<th>Imports into:</th>
<th>BRA</th>
<th>CAN</th>
<th>CHN</th>
<th>E15</th>
<th>eit</th>
<th>IND</th>
<th>JPN</th>
<th>lty</th>
<th>MEX</th>
<th>RUS</th>
<th>USA</th>
<th>xhy</th>
<th>xmy</th>
<th>xx1</th>
<th>ZAF</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA</td>
<td>0.0%</td>
<td>3.4%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.1%</td>
<td>2.8%</td>
<td>4.0%</td>
<td>2.8%</td>
<td>2.7%</td>
<td>2.6%</td>
<td>3.0%</td>
<td>3.9%</td>
<td>3.0%</td>
<td>3.7%</td>
<td>2.9%</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>4.5%</td>
<td>0.0%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.2%</td>
<td>3.7%</td>
<td>3.4%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.6%</td>
<td>3.8%</td>
<td>2.9%</td>
<td>3.6%</td>
<td>3.0%</td>
<td>2.9%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>CHN</td>
<td>12.1%</td>
<td>10.5%</td>
<td>0.0%</td>
<td>10.5%</td>
<td>11.7%</td>
<td>13.4%</td>
<td>10.4%</td>
<td>11.0%</td>
<td>9.9%</td>
<td>10.0%</td>
<td>10.3%</td>
<td>11.0%</td>
<td>10.9%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>10.7%</td>
<td></td>
</tr>
<tr>
<td>E15</td>
<td>1.6%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>0.0%</td>
<td>1.1%</td>
<td>1.3%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.1%</td>
<td>1.2%</td>
<td>1.3%</td>
<td>1.1%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.2%</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>eit</td>
<td>6.6%</td>
<td>4.1%</td>
<td>4.3%</td>
<td>4.0%</td>
<td>0.0%</td>
<td>5.1%</td>
<td>3.9%</td>
<td>4.5%</td>
<td>4.2%</td>
<td>4.4%</td>
<td>4.2%</td>
<td>5.2%</td>
<td>4.5%</td>
<td>4.6%</td>
<td>4.6%</td>
<td>4.2%</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>8.3%</td>
<td>7.8%</td>
<td>9.2%</td>
<td>7.7%</td>
<td>8.9%</td>
<td>0.0%</td>
<td>6.8%</td>
<td>8.5%</td>
<td>8.1%</td>
<td>8.7%</td>
<td>7.9%</td>
<td>7.0%</td>
<td>7.9%</td>
<td>8.5%</td>
<td>5.3%</td>
<td>7.8%</td>
<td></td>
</tr>
<tr>
<td>JPN</td>
<td>1.4%</td>
<td>1.3%</td>
<td>1.5%</td>
<td>1.4%</td>
<td>1.6%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.2%</td>
<td>1.5%</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>lty</td>
<td>8.2%</td>
<td>5.4%</td>
<td>5.7%</td>
<td>5.0%</td>
<td>5.8%</td>
<td>6.1%</td>
<td>4.7%</td>
<td>0.0%</td>
<td>5.1%</td>
<td>4.9%</td>
<td>5.0%</td>
<td>5.3%</td>
<td>5.7%</td>
<td>6.1%</td>
<td>7.0%</td>
<td>5.3%</td>
<td></td>
</tr>
<tr>
<td>MEX</td>
<td>3.5%</td>
<td>2.1%</td>
<td>4.2%</td>
<td>4.0%</td>
<td>3.6%</td>
<td>10.8%</td>
<td>4.0%</td>
<td>4.9%</td>
<td>0.0%</td>
<td>4.1%</td>
<td>1.7%</td>
<td>4.6%</td>
<td>3.4%</td>
<td>4.0%</td>
<td>3.5%</td>
<td>2.3%</td>
<td></td>
</tr>
<tr>
<td>RUS</td>
<td>18.0%</td>
<td>14.3%</td>
<td>12.4%</td>
<td>11.8%</td>
<td>13.9%</td>
<td>12.8%</td>
<td>11.3%</td>
<td>15.0%</td>
<td>14.7%</td>
<td>0.0%</td>
<td>10.4%</td>
<td>14.5%</td>
<td>13.6%</td>
<td>14.0%</td>
<td>15.9%</td>
<td>12.6%</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>3.3%</td>
<td>3.0%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.4%</td>
<td>3.3%</td>
<td>3.0%</td>
<td>3.3%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>0.0%</td>
<td>3.2%</td>
<td>2.9%</td>
<td>3.5%</td>
<td>3.2%</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>xhy</td>
<td>3.3%</td>
<td>2.3%</td>
<td>2.2%</td>
<td>2.3%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>2.0%</td>
<td>2.3%</td>
<td>2.2%</td>
<td>2.5%</td>
<td>2.0%</td>
<td>0.0%</td>
<td>2.2%</td>
<td>2.4%</td>
<td>2.5%</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>xmy</td>
<td>6.3%</td>
<td>5.6%</td>
<td>5.0%</td>
<td>5.4%</td>
<td>5.8%</td>
<td>4.1%</td>
<td>4.1%</td>
<td>6.1%</td>
<td>5.3%</td>
<td>6.1%</td>
<td>4.5%</td>
<td>4.5%</td>
<td>0.0%</td>
<td>6.2%</td>
<td>5.1%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>xx1</td>
<td>2.5%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>3.2%</td>
<td>2.2%</td>
<td>2.3%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
<td>2.3%</td>
<td>2.1%</td>
<td>0.0%</td>
<td>2.7%</td>
<td>2.1%</td>
<td></td>
</tr>
<tr>
<td>ZAF</td>
<td>15.9%</td>
<td>10.1%</td>
<td>10.6%</td>
<td>9.8%</td>
<td>10.1%</td>
<td>11.5%</td>
<td>11.4%</td>
<td>9.0%</td>
<td>16.6%</td>
<td>7.9%</td>
<td>8.9%</td>
<td>12.4%</td>
<td>8.8%</td>
<td>10.2%</td>
<td>0.0%</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.2%</td>
<td>3.0%</td>
<td>2.7%</td>
<td>4.3%</td>
<td>2.9%</td>
<td>4.2%</td>
<td>4.2%</td>
<td>4.2%</td>
<td>3.4%</td>
<td>3.2%</td>
<td>3.1%</td>
<td>4.1%</td>
<td>3.2%</td>
<td>3.1%</td>
<td>3.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Atkinson et al (2010)
Case for a carbon tax
Case for a carbon tax

Rationale for carbon tax

- Need for early action
- Price certainty important to incentivise innovation + investment
- Emissions profile & market structure not conducive to ETS
 - More than 60% of permits held by 2 institutions
- Detailed information to implement ETS lacking
 - Detailed sector level data on emissions, mitigation potential + abatement costs
- Simplicity + ease of administration of tax
 - Relative few data requirement for level tax
 - Institutional infrastructure + skills exist

Case for a carbon tax (2)

Economic instruments choice in future

- Tax and ETS compatible (tax does not close off ETS option)
 - Tax and ETS easily combined
 - Tax will generate information that will support ETS development
 - Voluntary local scheme can generate information

- Link SA ETS to international scheme
 - Sectoral approaches (sector “no lose targets”) fit with carbon tax

- Tax easy to replace with ETS
 - Tax easily removed in budget process
 - No sunk cost – institutions already exist
 - Monitoring infrastructure can be applied to ETS
Carbon tax: international experience
Carbon tax: int’l experience

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CAP AND TRADE SCHEME</th>
<th>CARBON TAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Denmark</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sweden</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>France</td>
<td>Yes</td>
<td>Implementation on hold</td>
</tr>
<tr>
<td>Norway</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ireland</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EU</td>
<td>Yes</td>
<td>Under consideration</td>
</tr>
<tr>
<td>Japan</td>
<td>Proposed</td>
<td>Proposed (2011)</td>
</tr>
<tr>
<td>Australia</td>
<td>Proposed (on hold)</td>
<td>Proposed (on hold)</td>
</tr>
<tr>
<td>US</td>
<td>Proposed</td>
<td>Proposed</td>
</tr>
<tr>
<td>Canada (British Columbia)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>China</td>
<td>No</td>
<td>Proposed (2012)</td>
</tr>
<tr>
<td>India</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| United Kingdom | 2001 | GPL: 5.49
Oil: 7.73
Gas: 13.09
Fixed rate in £ since 2001
Mixed carbon-energy tax | Gas: 0.050
Oil: 0.030
GPL: 0.021 | Reduction of employer social charges, subsidies to environmental projects via the Carbon Trust | Does not concern households. Only on coal, natural gas, GPL and electricity.
80% under conditions (objectives of energy efficiency) | -17.4% |
| Netherlands | 1990 | 12
Combination of two carbon-energy mixed taxes | 0.036 | Initially reduction of income tax, then lowered employer charges | 3.40€/t for sectors of high energy intensity
50% for non-profit organisations
Conditional exemption for gas and electricity for electricity production
Coverage rate for all emissions: 0.3 | -2.1% |
| Denmark | 1992 | 12.09
13.43 in 1992 (reduction due to parallel introduction of energy tax in 2005)
Increases by 1.8%/yr until 2015 | 0.044 | Reduction of employer social charges, family allowances, reduced income taxes on low incomes,
20% of revenue allocated to programmes to improve energy efficiency | 1992: exemption for all businesses.
1993 to 1995: 50% (or more, up to 90% for energy-intensive activities)
Since 1996: discrimination according to use (heating, lighting, etc.).
Exemption for electricity production | -3.5% |
| Finland | 1990 | Only 51.45 in 1990
Increases from 2011 | 0.071 | Mostly reduced income tax (since 1996). Since 2009, abolition of social contributions by employers, financed by future rise in green taxes | - Use as industrial material
- Fuel for trains, aircraft and boats
- Electricity for greenhouses
- No tax for electricity production
- 50% for natural gas | +10.6% |
| Norway | 1991 | 34.4 | 0.062 | Support for projects of research and development, allowances for households | Exemptions for heavy industry, fishing, air and maritime transport
Coverage for all emissions: 0.66 (between 1990 and 1999) | +18.7% |
| Sweden | 1991 | 108
100 in 2007
43 in 1991 (indexed for inflation) | 0.40 | Reduction of income tax, extension of VAT base, lowering of social charges on employers since 2001, R&D | Originally no allowance for industry, but all green taxes capped at 1.2% of sales.
Since 1997, limited to 0.8% for certain activities | -9.1% |

Source: Laurent and Le Cacheux (2009)
Carbon tax: environmental impact
Environmental impact

Theoretical impact

• Greenhouse gas emissions (GHGs) an externality
 – Market fails to price environmental costs
 – Cost to society not considered
 – More than socially optimal level produced

• Economic instruments “put a price on carbon”
 – Level of emissions reduced
 – Demand shifts from carbon-intensive to less carbon-intensive goods/services
 – Over time leads to structural change in economy

Source: Cloete, Tyler and Robb (FRIDGE) (2010)
Environmental impact (2)

Peak, Plateau, Decline (PPD) trajectory

Source: DEAT (2008)
SA policy

- **Copenhagen Accord targets based on PPD trajectory**
 - 2020 + 2025 targets correspond to “Peak”
 - 34% below Business as Usual by 2020
 - 42% below Business as Usual by 2025
 - Targets met through:
 - Energy efficiency
 - Electricity supply (renewables, nuclear, clean coal)
 - Improvement in public transport
 - Improvement in vehicle efficiency
 - But after 2020-2025 not enough
 - Carbon pricing required to say on PPD trajectory

Carbon price in place by 2015 – 2020 (2011?)
Carbon tax: Economic impact
Economic impact

Likely impact: current research

- Van Heerden et al (2005)
 - R35/tCO$_2$ carbon tax leads to decrease in GDP without revenue recycling
 - With revenue recycling (reduction in food tax) GDP increases

- Pauw/LTMS (2007)
 - Up to carbon tax of R75/tCO$_2$ revenue recycling can undo negative impact on GDP growth
 - Above R75/tCO$_2$ negative impact on growth

<table>
<thead>
<tr>
<th>Impact of carbon tax with no revenue recycling on economic growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax level (R/tCO$_2$)</td>
</tr>
<tr>
<td>Impact on GDP</td>
</tr>
</tbody>
</table>

Source: Pauw (2007)
Impact of carbon tax with revenue recycling on economic growth

Source: Pauw (2007)
Economic impact (3)

• Devarajan et al (2009): 15% reduction in emissions will require carbon tax of:
 – R96.25/tCO₂ (flexible economy) or R165.22/tCO₂ (Rigid economy)
 – Both scenarios lead to 0.2% reduction in GDP

• Kearney (2010): Models ‘Use the market’ LTMS scenario using dynamic CGE model
 – R250/tCO₂ in 2008 increasing to R750/tCO₂
 – Net positive impact on GDP over entire period of 0.73% due to increased investment
 – Result holds with and without revenue recycling

<table>
<thead>
<tr>
<th>Impact on GDP (percentage deviation from GWC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact on GDP</td>
</tr>
</tbody>
</table>

Source: Kearney (2010)
Carbon tax: social impact
Social impact

Current evidence

• Van Heerden et al (2005):
 – With suitable recycling mechanism (food tax break) net positive impact on the economy (‘Triple-dividend’):
 o Reduction in emissions
 o Reduction in poverty
 o Increase in GDP

• Pauw (2007)/ LTMS:
 – Similar result to Van Heerden et al (2005) at relatively low tax levels (below R200/tCO$_2$)
 – Recycling of revenues through a subsidisation of basic food prices - employment changes positive up to
 o R100/tCO$_2$ for semi-skilled workers
 o R200/tCO$_2$ for unskilled workers
Social impact (2)

- **Devarajan et al (2009):**
 - Carbon tax of R96.25/tCO$_2$ (flexible economy)
 - 0.33% reduction in welfare (no revenue recycling)
 - 0.27% reduction in welfare (revenue recycling)
 - Carbon tax of R165.22/tCO$_2$ (rigid economy)
 - 0.35% reduction in welfare (no revenue recycling)
 - 0.26% reduction in welfare (revenue recycling)
 - Loss in welfare due to rigidities in SA labour market

- **Kearny (2010)**
 - Use the market LTMS scenario leads to
 - Increase in household welfare
 - Increase in employment across skill levels
Social impact (3)

<table>
<thead>
<tr>
<th>Employment and wage impact (Use the market)</th>
<th>Average percentage deviation from GWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-skilled labour</td>
<td>8.4</td>
</tr>
<tr>
<td>Skilled labour</td>
<td>8.8</td>
</tr>
<tr>
<td>Semi-skilled and unskilled labour</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Impact on household welfare

Source: Kearney (2010)
Carbon tax: design considerations
Design considerations

Options for levying a carbon tax

- Source: Cloete, Tyler and Robb (FRIDGE) (2010)
Implementing a carbon tax (1)

Tax design guidelines

- Implementation of carbon tax should be clearly signalled
 - Announce 12-24 months before implementation to give firms time to prepare
- Emphasis should be on generating data and setting right tax level over time
 - Start off with low-level tax to minimise competitiveness concerns and generate data
- Provide as much price certainty as possible
 - Announce future path of carbon tax
 - Announce bands for next 24-36 months
 - Position within band will depend on emissions data
- Tax should be revenue neutral (but NOT earmarked)
Implementing a carbon tax (2)

Tax design guidelines

- Policy coherence is important (i.e. energy policy)
- Create special dispensations for “difficult to measure” sectors
 - Transport, agriculture and residential sector
- Implement tax on emissions at source (inputs good proxy in SA)
 - Potentially high monitoring and compliance cost addressed
 - Focus tax on largest emitters first and expand coverage over time
- Valid competitiveness concerns should be addressed
 - Emphasis should be on technical solutions
 - i.e. subsidies and soft loans for investment in new technologies
 - Partial/full exemption only in exceptional circumstances
 - Exemptions should include sunset clause
- Create broad-based carbon price in economy
Implementing a carbon tax (3)

Supporting measures

- Availability of low-carbon alternatives will increase effectiveness of tax & reduce competitiveness impact
 - Regulatory measures to overcome non-price barriers to uptake of low-carbon alternatives (i.e. energy sector)
 - Incentives for development of low-carbon technologies
 - Increase public sector support of basic research
 - No direct incentives for R&D in low-carbon technology in SA
 - General incentives cover low emissions R&D only indirectly
 - Potential focus for new incentives
 - Target the creation of competitive advantage in particular technologies via competition for funding (NOT directed funding)
 - Adapt existing low-carbon technology for South African environment
Design considerations

Carbon tax in SA

- National Treasury considering broad-based carbon tax
 - Current indications:
 - Tax at source
 - R100/t on CO₂ embodied in coal
 - Likely impact (Winkler and Marquard, 2009):
 - Cost of electricity increases roughly 10c/kWh
 - Cost of liquid fuels increases roughly 22c/l

- R100/t at lower end of cost estimates in literature
 - Expected to increase significantly in future

- Suite of instruments will also include specific taxes
 - i.e. CO₂ tax on vehicle emissions
SA greenhouse gas emissions profile 2000

Source: DEAT (2009)
Brent Cloete
brent.cloete@dnaeconomics.com

Tel +27 (0)12 362 0024
Fax +27 (0)12 362 0210
Email contact@dnaeconomics.com
www.dnaeconomics.com

4th Floor, South Office Tower, Hatfield Plaza,
1122 Burnett Street, Hatfield, Pretoria, 0083
PO Box 95838, Waterkloof, 0145

DNA Economics is the registered business and trading name of Development Network Africa (Pty) Ltd
Company Registration: 2001/023453/07 | Directors: Gareth Osche | Elias Maselela | Matthew Stern

www.dnaeconomics.com